LBNE long-baseline physics in the Project X era

Zeynep Isvan // Brookhaven National Laboratory

June 19, 2012 Project X Physics Study, Fermilab

Project X and LBL Beam Neutrino Physics

- "A high-power proton source with proton energies between 1 and 120 GeV would produce intense neutrino sources and beams illuminating near detectors on the Fermilab site and massive detectors at distant underground laboratories."
- Long-baseline beam physics goals of LBNE: To resolve CPV and mass hierarchy.
- LBNE and Project X will both be 'phased' in parallel.
 - LBNE phase 1 starts running, PX stage 1 starts around phase 2 of LBNE.

ν_μ→ν_e oscillations at 735 km

• Appearance probability as a function of energy and baseline

ν_μ→ν_e oscillations at 1300 km

• Appearance probability as a function of energy and baseline

CP Asymmetry

$$\mathcal{A}(\mathsf{E}_{
u}) = \left[rac{\mathrm{P}(
u_{\mu}
ightarrow
u_{\mathrm{e}}) - ar{\mathrm{P}}(ar{
u}_{\mu}
ightarrow ar{
u}_{\mathrm{e}})}{\mathrm{P}(
u_{\mu}
ightarrow
u_{\mathrm{e}}) + ar{\mathrm{P}}(ar{
u}_{\mu}
ightarrow ar{
u}_{\mathrm{e}})}
ight]$$

- Largest CP asymmetry at $\delta_{CP} = -\pi/2$
- Effect gets smaller with large sin²θ₁₃
- Larger effect in the second maximum

CP and matter asymmetries

- CP asymmetry are largest at the secondary oscillation nodes.
- Matter asymmetry largest at the first oscillation node.
- Need wide band beam to resolve degeneracies.
- For CP, need high signal/background in 2nd maximum.
- v_μ→v_e appearance signal size O(1000) events per 100kT·MW·years; need large detectors and powerful beams.

Example Research Program, definitive space on PXPS website.

	Project X Campaign					
Program:	Onset of NOvA operations in 2013	Stage-1: 1 GeV CW Linac driving Booster & Muon, n/edm programs	Stage-2: Upgrade to 3 GeV CW Linac	Stage-3: Project X RDR	Stage-4: Beyond RDR: 8 GeV power upgrade to 4MW	
MI neutrinos 8 GeV Neutrinos	470-700 kW** 15 kW + 0-50 kW**	515-1200 kW** 0-42 kW* + 0-90 kW**	1200 kW 0-84 kW*	2450 kW 0-172 kW*	2450-4000 kW 3000 kW	
o Gev Neutrinos	13 KW 1 0-30 KW	0-42 KW 1 0-30 KW	0-04 KW	0-172 KW	3000 RVV	
8 GeV Muon program e.g, (g-2), Mu2e-1	20 kW	0-20 kW*	0-20 kW*	0-172 kW*	1000 kW	
1-3 GeV Muon program, e.g. Mu2e-2		80 kW	1000 kW	1000 kW	1000 kW	
Kaon Program	0-30 kW** (<30% df from MI)	0-75 kW** (<45% df from MI)	1100 kW	1870 kW	1870 kW	
Nuclear edm ISOL program	none	0-900 kW	0-900 kW	0-1000 kW	0-1000 kW	
Ultra-cold neutron program	none	0-900 kW	0-900 kW	0-1000 kW	0-1000 kW	
Nuclear technology applications	none	0-900 kW	0-900 kW	0-1000 kW	0-1000 kW	
# Programs:	4	8	8	8	8	
Total max power:	735 kW	2222 kW	4284 kW	6492 kW	11870kW	

^{*} Operating point in range depends on MI energy for neutrinos.

^{**} Operating point in range depends on MI injector slow-spill duty factor (df) for kaon program.

LBNE Options: Phase 1

- Steering committee strongly favored the 10kT Homestake option.
- Most promising option both by its standalone physics reach and its compatibility with a longer term program including PX.

LBNE Phase 2 + Project X Stage 1

- Stage 1 of PX increases the MI beam power to MW range
- LBNE/Homestake Phase 2 + PX Phase 1 = Discovery (>5σ) CPV

LBNE Phase 2 + Project X Stage 1

-1 -0.8-0.6-0.4-0.2 0

 δ_{CP}/π

0.2 0.4 0.6 0.8 1

CPV Significance vs δ_{CP}

NH(IH considered)

LBNE/Soudan (15-40kT)
 Phase 2 + PX Phase 1 =
 < 3σ CPV even with
 Project X Stage 1

Project X Stage 2 Possibilities

- Stage 2 will allow MW-power lower energy beams
- Can we gain low energy flux (at long baselines) by going to lower energies?
- This can populate the second maximum and improve the signal/background in the CPVsensitive region.
- Consider 30, 60, 90 GeV energies and 1MW beam power
- Separation power figure of merit

$$\frac{N_{-\pi/2} - N_{\pi/2}}{\sqrt{B}} = 23.5$$

nerit:		Neutrino Energy (GeV)					
δ_{CP}	N	N _{second}	N _{first}	N/\sqrt{B}	N_{second}/\sqrt{B}	N_{first}/\sqrt{B}	
0	897	14	817	48.86	2.27	57.34	
$\pi/2$	650	5	597	35.41	0.81	41.90	
$-\pi/2$	1081	24	994	58.89	3.89	69.77	

60 GeV 1MW, 30 GeV 1MW

- Can do better CPV than 120 GeV with the same amount of running
- Technical: High density graphite target inserted into horn 1 unlike standard NuMI LE at z=-30cm

90 GeV 1MW, Hybrid Tantalum-Carbon Target

 Technical: High density graphite target inserted into horn 1 unlike standard NuMI LE at z=-30cm

$$\frac{N_{-\pi/2} - N_{\pi/2}}{\sqrt{B}} = 29.3$$

δ_{CP}	N	N _{second}	N _{first}	N/\sqrt{B}	N_{second}/\sqrt{B}	N_{first}/\sqrt{B}
0	879	27	832	51.62	4.22	60.20
$\pi/2$	643	10	617	37.76	1.56	44.64
$-\pi/2$	1142	46	1075	67.06	7.18	77.78

30 GeV 1.2 MW Beam, 1300km baseline

- CP separation in conjunction with pre-Stage 2 datasets fills in low energy spectrum
- Sensitivity studies coming

60 GeV 1.2 MW Beam, 1300km baseline

- Larger flux but slightly higher energy.
- Further studies ongoing to optimize and determine combination that gives the best sensitivity soonest in a viable phasing scenario.

Stage 3: 8GeV and 3-4 MW

- With this super high intensity beam it is possible to do longbaseline physics at very low energies: second maxima can be illuminated
- Degeneracy between $\delta_{CP} < 0$ and $\delta_{CP} = 0$.

Matter vs CP effect with 8 GeV

 Mass hierarchy and CP asymmetry non-degenerate - they're completely disentangled!

Theta23 octant variation

- Also disentangled from theta23 octant especially at the lowest of energies.
- With a high-power low energy beam the asymmetry is ONLY driven by CP: even a counting experiment can be sufficient.

Summary and outlook

- LBNE is able to resolve the mass hierarchy with high significance.
- The CPV sensitivity moves into the discovery regime with the boost in power from Project X Stage 1.
- With Stage 2 and low energy configurations the CPV sensitivity is improved compared to the standard 120 GeV configuration. (60 GeV best among those studied so far).
- Multimegawatt 8 GeV (Stage 3 and beyond) illuminates the second maximum and separates CP from other sources of asymmetry.
- Sensitivity studies in progress as well as studies of different configurations and optimizations.